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Abstract

This paper examines the labor market effects of Venezuelan migration on low-wage
Colombian workers. Using nationally representative survey data from 2012 to 2019 and a
machine learning model to classify workers by their predicted probability of being in the lower
tail of the wage distribution, I implement a Triple Differences-in-Differences strategy to estimate
causal impacts across cities with varying levels of migrant exposure. The main finding is that,
although migration had no significant effects on employment formality or self-employment, it
did lead to a decline in wages among low-wage natives in high-migration cities. This effect
is robust to alternative definitions of treatment and control groups. This finding suggests that
immigration can exert downward pressure on earnings at the lower end of the wage distribution
and underscore the importance of protecting vulnerable groups during large-scale displacement
events.

Keywords: Migration; Colombia; Triple Differences-in-Differences; Machine Learning.

JEL classification: JO1, J15, J61, C45

*Independent Researcher. Email: afrj1996 @gmail.com. I first conceived the idea of this paper while I was working
at Harvard Business School, Digital Reskilling Lab as a Research Assistant



1 Introduction

The recent mass migration from Venezuela represents one of the largest displacement crises in
modern Latin American history. By May 2025, according to the inter-agency coordination platform
for refugees and migrants, roughly 6.87 million Venezuelans had left their country and had settle in
other countries in Latin America and the Caribbean, with Colombia hosting the largest share—more
than 2.8 million people, most of whom arrived within a few years following the 2016 reopening
of the border (R4V, 2025). This sudden and large inflow of migrants has raised critical questions
about the capacity of host labor markets to absorb newcomers and the potential consequences for
native workers, particularly those in vulnerable positions.

While the literature on the labor market impacts of immigration is extensive, most empirical evidence
comes from high-income countries with relatively structured migration regimes and strong labor
institutions'. In contrast, low- and middle-income countries face very different conditions. Labor
markets in these settings are often informal, fragmented, and weakly regulated (Breza and Kaur,
2025). As a result, the mechanisms through which migration affects native workers may differ
substantially from those documented in the Global North and remain understudied.

This paper examines the short-run impact of Venezuelan migration on labor market outcomes
for Colombian workers, focusing on low-wage individuals who are more likely to compete with
migrants for low-paying jobs: even if the skill composition of the migrant population is similar to
that of the natives, they suffer from a downgrade in their returns to skills, as documented in the
Venezuelan case (Santamaria, 2022), which leads to high competition for low-wage jobs”. Motivated
by this fact, I apply several machine learning models trained on pre-crisis data to estimate natives’
probability of being in the lower tail of the wage distribution. Then, I leverage the 2016 border
reopening and the subsequent deterioration in the living conditions in Venezuela, which caused
a sharp increase in migrant flows after this event, and historical migration patterns across cities
in a triple-difference in difference (DDD) strategy that compares pre- and post-border reopening
differences in outcomes of low-wage and non-low-wage individuals between cities with high and
low historical Venezuelan migration.

The use of machine learning techniques to identify the potential exposed population allows for a
more flexible and data-driven identification of potentially affected individuals, reducing reliance
on arbitrary definitions of the treatment and control groups °. Furthermore, a key strength of the
methodology is that, in the training stage, I only employ individual characteristics unlikely to be
influenced by the shock in the short term *. This careful variable selection allows the prediction
model to retain validity after the shock. Additionally, given that I use predictors that are defined for
all individuals (not only those who are working), I can classify all individuals who are unemployed

IFor example, from all the papers listed by Dustmann et al. (2016) only one used data from a developing country (
Malaysia).

2See also subsection 3.2 below for an analysis of this phenomenon. Similarly, Dustmann et al. (2013) report evidence
of downgrading of migrants in the UK.

3This approach, based on Card and Krueger (1995), was used by Cengiz et al. (2022) to analyze the impact of
minimum wage increases on low-wage workers, and for Card et al. (2024) to predict stated gender preferences in job
postings.

“For example, I use house ownership status and house amenities, such as clean water supply. A detailed description
of all the variables used to train the model can be found in appendix B and table B.2.
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or inactive. This allows to determine the effect of the migration shock on low-wage employees’
unemployment and participation rates.

The research design relies on the assumption that in the absence of the migration shock, the
difference in outcomes between classified low-wage and non-low-wage workers would evolve
similarly across cities. I provide evidence of the plausibility of the parallel trends assumption before
the border re-opening, using an event study specification, and show a lack of significance of the
coefficients associated with the pre-treatment period for all the studied outcomes.

I first document the strong capacity of the trained models to predict low-wage workers. Out of
sample performance calculations reveal that the model can achieve high levels of precision while
maintaining high levels of recall. For example, for a 75% recall, the best model, XGBoost, achieves
a precision of 52%°. Then I use the predicted probabilities as input for the DDD estimation. The
main findings reveal a negative and statistically significant effect on log wages for low-wage native
workers in cities with high exposure to migration. Specifically, I estimate a 7.1 percent reduction in
wages for this group after the border reopening, consistent with downward pressure on wages due
to increased labor supply from migration inflows. In contrast, no significant effect was found on the
probability of unemployment. Additionally, I document a positive and marginally significant effect
on labor market participation in the first year after the border re-opening.

Furthermore, I show that these results mask heterogeneity across different groups: The negative
impact on wages increases with age as young workers (aged 15 to 28) face a wage reduction of
about 10% while workers aged 41 or more face a 5% reduction. Similarly, I find a negative and
significant effect on unemployment only for women. Then, I also explore heterogeneous effects on
wages across industries and I find that industries with a high share of small firms or a high share of
self-employed workers experience a less pronounced reduction in wages. Finally, I also explore
the effect of the migration shock on other labor market variables and document null results on the
probability of having a formal job or being self-employed. This indicates that the main adjustment
channel is the decrease in wages for low-wage individuals.

This paper advances the broader immigration literature by extending insights from high-profile
debates in developed economies, such as the Mariel Boatlift in the United States, to the context of
South-to-South migration in middle-income countries like Colombia 6. Furthermore, it introduces
a robust, innovative methodology that leverages machine learning to identify workers potentially
impacted by migration. I show that the machine learning models outperform other approaches
conceived to identify workers with a high risk of being exposed to migration using observable
characteristics such as education (Altonji and Card, 1991).

A growing body of empirical research has investigated the effects of Venezuelan migration on the
Colombian labor market. For example, Bonilla-Mejia et al. (2024); Caruso et al. (2019); Delgado-
Prieto (2024); Otero-Cortés et al. (2022); Pedrazzi and Pefaloza-Pacheco (2023), employ an
Instrumental Variable (IV) approach leveraging spatial variation on previous migration patterns and
temporal variation from different indicators of the Venezuelan economic crisis. These instruments
fall into the Bartik-instrument category, which combines local pre-shock migrant shares with time-

3Similarly, Cengiz et al. (2022) report that for a recall of 75% their preferred model achieves a 35% precision rate.
Our model also achieves a similar performance to that reported in Bazzi et al. (2022). See section B for more details
about precision and recall curves.

6See for example Borjas (2017); Card (1990) or Monras (2021) as exponents of this debate.



varying national-level shocks (Goldsmith-Pinkham et al., 2020). While these strategies offer a
compelling solution to the endogeneity of migrant location choices, they present challenges of their
own. Since there is only one time varying national level shock: the deterioration of Venezuelan
conditions; measured using the price index as in Bonilla-Mejia et al. (2024) and Otero-Cortés
et al. (2022) or the number of migrants crossing the border, as in Delgado-Prieto (2024); the
validity of the instruments hinges on the exogeneity of pre-shock migrant shares (Borusyak et al.,
2021; Goldsmith-Pinkham et al., 2020). This assumption may not hold given potential unobserved
confounders, such as regional policy differences or historical socioeconomic factors. For instance,
border cities may have unique labor markets or social integration dynamics that could correlate with
both the instruments and the outcomes, potentially violating the exclusion restriction.

The identification strategy employed in this paper, a Triple Difference in Difference, allows for
differential trends for the exposed groups (low-wage workers) across high and low historical
migration cities, relaxing the identification assumption of Bartik instruments. Furthermore, the
methodology plausibly allows the study of other behavioral responses of potentially low-wage
workers, such as labor market participation and unemployment since we can classify an individual
as low-wage worker, even if that individual is not working. Also, I show that the machine learning
approach performs better than simple rules that classify potentially low-wage individuals based on
commonly used observable demographics such as age, gender, and education”.

This paper is also related to the emerging empirical literature that uses machine learning techniques
in applied econometrics (Kleinberg et al., 2018; Lee et al., 2010; Mullainathan and Spiess, 2017).
Angrist and Frandsen (2022), in particular, explore the use of data-driven machine learning models
in empirical Labor Economics. More related is the investigation of Cengiz et al. (2022) that
uses machine learning techniques to identify workers more exposed to minimum wage increases.
This paper extends this methodology to the study of the effects of migration and shows how this
methodology can be integrated into a causal inference framework.

We start in the next section with a brief discussion of the context of the Venezuelan exodus.
Section 3 describes our data and presents descriptive statistics. Section 4 presents the results of
the prediction tasks and Section 5 presents our empirical strategy. Section 6 presents the main
results and robustness checks. Section 7 explores heterogeneity. Finally, section 8 concludes. The
Appendix contains additional tables and figures and further description of the implementation of the
machine learning approach to predict low-wage workers.

2 Background

The Venezuelan crisis intensified following the death of President Hugo Chavez in 2013 and a
sharp decline in global oil prices, sparking profound economic, political, and humanitarian turmoil
(Chaves-Gonzalez and Echeverria-Estrada, 2020). This downturn exposed the vulnerabilities of an
economy overly reliant on petroleum revenues, which had funded extensive social programs under
the Bolivarian Revolution initiated in 1999. Policies including expropriations of private property,

"Cengiz et al. (2022) point to the fact that several investigations have focused on teenagers, or low-educated
individuals in search for a demographic group of individuals earning the minimum wage. I focus on similar classifications
and found that the machine learning model outperforms such a demographic classification approach.
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constitutional changes, and centralized control eroded institutional stability and private sector vitality,
leading to endemic economic distress (Vera, 2015). By 2015, oil prices had halved, crippling
government finances and triggering shortages in subsidized essentials like food and medicine
(Neuman, 2015). Furthermore, the Macroeconomic repercussions were severe: hyperinflation hit
approximately 130,000% in 2018, while GDP contracted by double digits annually from 2016,
plummeting to -30% in 2020 (IMF, 2025).

These factors fueled a massive exodus of Venezuelans who left their country in search of better
economic opportunities and to avoid political violence (European Parliament Research Service,
2018). Diplomatic strains compounded the situation; in 2015, tensions over alleged Colombian
armed groups in Venezuela prompted President Maduro to close the border, halting trade and
migration flows initially in Tachira state (Macias, 2015). This closure lasted until July 6, 2016,
when it reopened amid protests in Venezuelan border areas (Santamaria, 2022). Figure 1 shows the
impact that the reopening of the border had on the migration flows (Panel A) and the composition of
Colombia’s labor market (Panel B). Both series illustrate the sharp increase in Venezuelan migration
starting in right after the border re-opening and the subsequent increase in the share of migrants in
labor force.

Migrants primarily entered via land crossings like the Simon Bolivar International Bridge in Cucuta,
Péez Bridge in Arauca, and Paraguachon in Maicao, often undocumented and traveling onward by
foot, hitchhiking, or bus. Colombian policies allowed entry with expired documents, though many
used irregular paths (Cancilleria de Colombia, 2019). To facilitate integration, Colombia introduced
regularization efforts, including the Special Permit of Permanence (PEP) in late 2018, enabling
undocumented Venezuelans to access formal employment without sponsors or investments (Bahar
et al., 2022).

3 Data and Descriptive Statistics

This section describes the data sources, the process to obtain the final sample, and a description of
the process of labor market accommodation of Venezuelan migrants.

3.1 Data

The main data source is the Gran Encuesta Integrada de Hogares (GEIH, by its acronym in Spanish),
Colombia’s most important household survey focused on labor market outcomes. The GEIH is
collected monthly and is nationally representative for the 23 largest metropolitan areas, which
together represent over half of the Colombian population (Bonilla-Mejia et al., 2024). As the GEIH
does not produce representative estimates for smaller cities or rural areas, our analysis is limited to
urban residents in these major metropolitan areas.

This dataset contains information about the salary, employment, and demographic information such
as age, gender, family structure, education choices, and housing characteristics. I use a rich set of
household characteristics and household structure variables and other demographic variables to feed
the prediction model. Given our focus on labor market effects, the sample is restricted to individuals



Figure 1: Migration shock: Venezuelan Influx and Share on Labor Force
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Note: Figure 1 shows the evolution of the Venezuelan migration to Colombia. Panel (a) displays
the monthly inflow of Venezuelan migrants (in millions). Panel (b) displays the evolution of the
share of Venezuelan migrants in the labor force. Migrants are defined as individuals who were
living in Venezuela 5 years prior to the survey date. Source: Panel A: Author’s own calculations
from Migracién Colombia, Panel B: Author’s own calculations from GEIH.
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of working age (between 15 and 65 years old) in urban areas ®.

The different rounds of this survey allow the construction of a repeated cross-section for several
geographic entities. I employ the data from 2012 to 2019. To construct the prediction model, I use
the 2012 survey round as the primary sample. I chose this round because it predates the deepening
of the Venezuelan social crisis, allowing the prediction model to be based on data generated before
the large influx of Venezuelan migrants into the labor market. Section 4 describes in detail the
construction of the training and test samples and the process of training the model. I use the
migration module from the survey rounds of 2013 to 2019 to identify the migrants and native
individuals. I define a migrant as an individual that were living in Venezuela 5 years prior to the
survey date. I also use information from Migracion Colombia, which collects data from all the
foreign individuals in the country, and the extract of the 2005 Colombian census from IPUMS to
calculate the share of Venezuelans in the labor force in each of the main cities in 2005 as a measure
of previous settlement patterns.

8See table B.2 for a full description of the variables used to train the model.



3.2 Arrival of Venezuelan Migrants and Labor Market Adjustments

How does the local labor markets have absorbed the migration shock? Figure 2 reveals a high
concentration of wages below the minimum wage, particularly for migrant workers, and a sharp peak
for both migrants and natives. The broader distribution for native workers, with a more pronounced
tail extending beyond one, indicates greater wage diversity and possibly better access to higher
wage tiers.

Figure 2: Wage distribution of Natives and Migrant Workers
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Figure 2 shows the wage distribution for native (orange) and Immigrant (blue) workers. For
expositional purposes, the graph only depicts observations between 0 and 3 minimum wages, but
the density is calculated for the entire distribution. The red line marks the threshold for low-wage
workers, set at 75% of the monthly minimum wage. Migrants are defined as individuals who
were living in Venezuela 5 years prior to the survey date. Source: Author’s own calculations
from the GEIH.

The red line at 75% of the minimum wage underscores a critical insight: a significant number of
workers, especially immigrants, fall below this low-wage threshold. This finding points to economic
vulnerability among immigrant populations, where approximately half of the immigrant wage
distribution lies below or near this cutoff. This motivates the focus on low-wage workers as the
population more likely to be affected by the migration shock since migrants are arguably workers
who face a non-binding minimum wage and compete with other native workers facing the same
conditions.

Is there any spatial difference in the conditions of migrants? Figure 3 suggests that there are
spatial differences in the wage conditions of Venezuelan migrants depending on whether they
reside in high-migration cities (measured using 2005’s migrant shares in the labor force) or not,
especially after 2016. Across all years from 2013 to 2019, the left tail of the distribution of wages
for Venezuelan immigrants (relative to the minimum wage) tends to be thicker in high-migration
cities (blue boxes) compared to other cities (orange boxes). This pattern is particularly evident in
the years after 2016, where the wage gap between median wage for high and low migration cities
appears to widen. This pattern is consistent with an increase in competition for low-wage jobs
after the border re-opening, not only between migrants but also, potentially, between native and
migrant workers. This observation motivates the empirical strategy of comparing low-wage and
non—low-wage individuals across cities with different historical migration patterns.



Figure 3: Wage distribution for Venezuelan Migrants in High and Low migration Cities
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Figure 3 shows the distribution of monthly wages relative to the minimum wage for for
Venezuelan migrants between 2013 and 2019. The y-axis is limited to show values between
0 and 3. Each box plot represents the interquartile range (25th to 75th percentile), with the
horizontal line indicating the median. The whiskers extend to 1.5 times the interquartile range,
and dots represent outliers. The red dashed line marks the 0.75 minimum wage threshold,
highlighting the proportion of individuals earning close to or below this level. Source: Author’s
own calculations from the GEIH.

Table 1 presents descriptive statistics comparing native and immigrant populations, highlighting key
demographic and economic differences. The data includes mean values and standard deviations
(SD) for variables such as age, gender (female), inactivity, monthly wage as a proportion of the
minimum wage, formality (defined by pension affiliation), probability of being a low-wage worker,
and years of schooling. Notable differences include a 3.71-year age gap, with immigrants averaging
32.63 years compared to 36.35 for natives, and a higher likelihood of immigrants being low-wage
workers (0.36 vs. 0.33). All differences are statistically significant (p-value ;0.001), underscoring
distinct labor market and educational profiles between the two groups.



Table 1: Descriptive Statistics

Natives Immigrants
Variable Mean SD Mean SD Difference p-value
Age 36.35 14.08 32.63 11.92 3.71 0
Female 0.54 050 051 0.50 0.03 0
Inactive Worker 028 045 020 040 0.08 0
Monthly wage/ Minimum wage  1.47 198 092 1.36 0.55 0
Formal Employee 048 059 0.12 033 0.35 0
Probability of being LW worker  0.33  0.26 036  0.25 -0.03 0
Years of Shool 10.47 419 997 3.63 0.50 0

Note: Table 1 depicts descriptive statistics comparing natives and Immigrants, showing means, standard
deviations (SD), differences, and p-values for variables including age, gender (female), inactivity, monthly
wage as a proportion of the Minimum wage, formality, as defined by pension affiliation, probability of being
a low-wage worker and years of school.

4 Predicting Low-Wage Employees

This section first describes the processes of predicting low-wage individuals. First I describe the
process of construction of the training and test samples. Then I briefly describe the Machine
Learning models trained and presents the results. See section B for more details about the training
process.

4.1 Test and Training Samples

To train the models I used the 2012 GEIH sample for all cities. I kept all workers between 15 and
65 years old and used the 2012 minimum wage to define the low-wage workers. I divided the data
into two parts. The first part, the training sample, with 60% of all households in the sample’ is used
to tune the model parameters using 5-fold cross-validation. The second, the test sample, which
comprises 40% of all households, is used to compare the out-of-sample model performance of the
competing models. '°.

4.2 Prediction Algorithms

In this section I briefly describe the prediction algorithms used to train the model. As described
in the previous section, I constructed a test sample in order to compare all these models in terms
of their out-of-sample performance. This ensures that the trained model will be trained to predict
unseen observations or, in other words, will not overfit.

“Here, a household refers to all the persons that live in a given house.
10To create all subsamples I used the city as strata. This ensures that all cities are proportionally represented in each
subsample.



Figure 4: Process of Dividing the Sample for Model Training and Evaluation
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Training Sample: Used to tune model parameters with 5-fold cross-validation.
Test Sample: Used to evaluate out-of-sample
model performance and calculate final thresholds.

Logit-Lasso Model: This algorithm extends the logistic regression estimation method by adding a
penalty to the model to reduce complexity, effectively shrinking some of the coefficients to zero
(Tibshirani, 1996). This results in a simpler model, often leading to less variance and to better
generalization on unseen or test data.

Random Forest: This is an ensemble learning method that constructs multiple decision trees and
merges their predictions to improve accuracy and control overfitting (Breiman, 2001). Each tree
in the forest gives a classification, and the forest chooses the classification with the most votes
(over all the trees in the forest). This approach is powerful for handling diverse feature sets and can
automatically capture complex interactions between variables.

Extreme Gradient Boosting Machine (XGBoost): XGBoost is a highly efficient and scalable
implementation of gradient boosting developed by Chen and Guestrin (2016). It works by building
trees sequentially, where each new tree attempts to correct errors made by the previous ones. This
method is known for its speed and performance, achieving high predictive accuracy by combining
the outputs of multiple weak learners to form a strong predictor. However, the number of parameters
to tune can be large, which makes them susceptible to overfitting and time-consuming with large
datasets. In this paper, I focused on a small set of tuning parameters, and, nevertheless, this model
supersedes the other models.

Neural Network: This algorithm is a one-layer Neural Network, also known as a single-layer
perceptron, which consists of an input layer, a single hidden layer, and an output layer (James et al.,
2021). It captures linear and some non-linear patterns in data using neurons or nodes to process
inputs. The network’s predictions are based on learned weights that connect these neurons. While
simpler than deeper networks, a one-layer neural network can still learn the non-linearities and
complexity of the DGP while maintaining a low complexity.
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4.3 Results

The Table 2 presents the out-of-sample performance of five prediction models using two key
evaluation metrics: the Area Under the Precision-Recall Curve (AUC-PR) and the Area Under the
Receiver Operating Characteristic Curve (AUC-ROC). These metrics are particularly informative in
settings with class imbalance, such as predicting rare events. Across the models, the Super Learner
achieves the highest scores in both AUC-PR (0.657) and AUC-ROC (0.822), followed closely by
XGBoost and the Neural Net. Notably, the Logit-Lasso model underperforms relative to the others,
with the lowest AUC-PR (0.541), suggesting that its linear specification is less effective in capturing
the complexities of the prediction task.

Table 2: Out-of-Sample Performance of Prediction Models,

(1) 2)

Model AUC-PR AUC-ROC
Random Forest  0.602 0.782
Logit-Lasso 0.541 0.753
XGBoost 0.656 0.821
Neural Net 0.638 0.815
Super Learner 0.657 0.822

Note: Table 2 depicts the out-of-sample area under the Precision-Recall (AUC-
PR) and Operating Characteristic Curve (AUC-ROC) for all the models trained.
The estimation uses the data in the test sample.

Despite the marginally higher performance of the Super Learner, I choose XGBoost as the preferred
model for subsequent analysis. This decision is motivated by two factors. First, the performance
gain from using the Super Learner over XGBoost is minimal—just 0.001 in AUC-PR and AUC-
ROC—implying limited value added. Second, an inspection of the ensemble’s weights reveals
that XGBoost contributes nearly all the predictive power to the Super Learner, indicating that the
ensemble’s strong performance is driven almost entirely by XGBoost. Therefore, for parsimony
and interpretability, I rely on XGBoost as the main prediction model. A.5 shows how the chosen
machine learning model compares with other demographic driven rules to distinguish low-wage
workers. Researchers have looked at the labor market of teenagers, females and low educated
individuals as potentially a low-wage labor markets since their lack of experience, discrimination
and education, respectively (Cengiz et al., 2022). I compare the precision and recall scores of these
simple classification rules and find that the XGBoost model outperforms this basic classifications.
In particular, the model offers a Pareto improvement in all cases in the sense that it can achieve a
higher precision (recall) given the same level of recall (precision) achieved by the classification rule.
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Figure 5: Precision Recall Curves on the Test Set
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Note: Figure 5 depicts the out-of-sample performance of each of the Machine learning
methods applied to the low-wage workers classification task. The results are computed using
the test sample subset. See main text and appendix B or details about each model and the
training process.

4.4 Using Predicted Probability for Inference

With the predicted probability for each individual in our sample, we can define low-wage employees,
allowing for different cut-offs in the estimated probability. Following Cengiz et al. (2022) and Card
and Krueger (1995) I define the high-recall sample (HR) defined with a threshold (0.28) that allows
a recall of 75%. This means that 75% of all minimum wage workers are included in this group. On
the other hand, the precision in this case is 0.52. With this sample in hand, I define the low-wage
workers as those with a predicted probability greater than 0.28. I show that the main results are
robust to the choice of the threshold.

S Methodology

This section describes the identification strategy used to estimate the effect of the migration shock
on labor market outcomes, namely, a Triple Differences-in-Differences research design (DDD).
I first present the methodological approach and the estimating equation, then define the causal
parameter of interest and discuss the assumptions required for identification.

5.1 SetUp

The implementation of the DDD methodology leverages the fact that, based on the estimated
probability, we can classify a group of low-wage employees within each city. In addition, we define
high-migration cities and a post-treatment period to evaluate the effect of the border reopening in

12



July 2016. This approach compares the difference in outcomes between low-wage workers and other
workers in highly migration-exposed cities to the same difference in less-exposed cities, before and
after the policy shock. The key identifying assumption is that, in the absence of the migration shock,
the evolution of this gap between low-wage and other workers would have been parallel across high-
and low-migration cities.

Note that this approach allows for differential trends between workers within the same city. The
DDD estimating equation is the following:

Yier =Ye + & + X, Q+T.(t X ¥) + pPLowWage

ict

+ p!PP(Post, x HighMig,) + p>PP (Post; x LowWage,,) + p>PP (HighMig, x LowWage,,,)

ict

DDD (

+p Post; x HighMig, x LowWage,;,) + €icr (D)

where 7, and & denote city and month fixed Effects. LowWage, , is an indicator of the worker being
a low-wage worker; that is, their predicted probability is higher than 0.28. Post; is an indicator
variable of the re-opening of the border and HighMig,. is an indicator of the city having a Venezuelan
migrant labor share in 2005 superior to the median. This last indicator is intended to allow us to
distinguish between cities with high exposure to migration, since migrants tend to settle in cities
with previous migration flows. Finally, X;, and (¢ X ¥, ) denote individual controls and city trends.
The interest lies on estimating p”PP. The set of demographic controls includes age and its square,
a dummy variable for female individuals, interaction terms between age (and age squared) and
this female dummy, literacy status, years of schooling, a variable that records the highest grade
completed, marital status, and the individual’s relationship to the household head.

This is a triple Differences-in-Differences model with non-staggered adoption since we define the
treatment as the reopening of the border. Hence, the problems arising with “forbidden” comparisons
between already treated groups will not be an issue here (Arkhangelsky and Imbens, 2024). We
can see that this estimator uses two Differences-in-Differences (DiDs) comparisons to construct
the triple difference estimator. First, it compares low-wage individuals and high-wage individuals
within high-migration cities before and after the reopening of the frontier. This is the first DiDs.
The second DiDs compares the mean outcome for low-wage individuals and high-wage individuals
in low-migration cities before and after the event.

To explore the dynamics of the impact of migration, I also estimate a dynamic version of the
equation | that replaces (Post; x HighMig,. x LowWage, ) with:

ict

Y pPPP(1[r € s] x HighMig, x LowWage,)

s ict
seG

where G is a set of disjoint subsets of [0, T]. s € G is a subset of the time frame. Identification does
not require parallel trends in each DiD comparison to hold. There can be differences in potential
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outcomes between different groups of workers within a city, but these differences in counterfactual
trends should be equal across different cities. I provide evidence that this is the case when estimating
the dynamic version of equation 1.

5.2 Fourth Differences

With the purpose of studying the heterogeneous effects of the immigration shock, I extend equation
1 to include an interaction with a subpopulation indicator to explore potential heterogeneous effects.
The Fourth difference in difference specification is:

4
Yier =Ye + & + X, Q+ T (t x %) + Z p"P (4 Linear Terms)

m=1

6 4
+ Y p"PP(6 Double Interactions) + Y p"PPP(4 Triple Interactions)

DDDD (

+p Post; x HighMig, x LowWage,., x Indicator;) + € )

ict

Where Indicator; is a dummy variable for the subpopulation of interest and the rest of the terms
have the same interpretation as these of equation 1. In this specification, we are interested in
the forth interaction coefficient, p?PPP that can be interpreted as the differential impact on the
outcome on individuals with Indicator; = 1, and in the third interaction coefficient, p''PPP  of
Post; x HighMig,. x LowWage

ict*

6 Results

6.1 Effect of Migration on Wages, Unemployment and Participation

Table 3 reports the results from the DDD specification described above, where we examine the effects
of the reopening of the border in July 2016 on two main outcomes: log wages, the and indicator
or unemployment, and for participation in the labor market (being employed or unemployed and
looking or a job). The coefficient of interest, p?PP, corresponds to the interaction term “Low Wage
x High Mig. City x Post,” which captures the differential change in outcomes for low-wage workers
in high-migration cities after the policy shock, relative to other groups.

The analysis focuses on low-wage individuals, defined as those with an estimated probability of
being greater than 0.28. As mentioned before, this threshold corresponds with recall of 75% of all
low-wage employees in the test sample. The treatment group consists of low-wage workers in cities
with high exposure to Venezuelan immigration—defined as cities where the share of Venezuelan
migrants in the labor force exceeds the national median in 2005—after the border opening.
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Table 3: Triple Difference In Differences Estimates of the Effect of Immigration on Wages,
Employment and Participation

ey 2 3)
Dependent Variable Log Wage  Unemployment Participation
Low Wage x High Mig. City x Post -0.071 -0.004 0.018
(0.019)*** (0.004) (0.009)*
[ 0.014] ** [ 0.317] [0.184]
Low Wage x Post 0.098 0.007 -0.030
(0.011)*** (0.002)*** (0.006)***
[ 0.001] #** [ 0.300] [ 0.001]***
High Mig. City x Post 0.026 -0.002 -0.002
(0.011) (0.005) (0.007)
[0.294] [0.771] [ 0.845]
Low Wage x High Mig. City 0.069 0.003 -0.017
(0.021)*** (0.010) (0.012)
[ 0.002] *** [ 0.833] [ 0.308]
Low Wage -0.424 0.052 -0.069

0.017)%%%  (0.005)%%*  (0.012)%**
[0.000] %  [0.000]%**  [0.015]**

Observations 1,472,614 1,905,710 2,676,042
Adjusted R-squared 0.358 0.056 0.283
Dep. Mean 13.426 0.122 0.712
Dep. Sd 0.912 0.328 0.453
City FE Yes Yes Yes
Time FE Yes Yes Yes
Demographic Controls Yes Yes Yes
City Trends Yes Yes Yes
Prediction Model XGB XGB XGB

Note: Table 3 shows the results of estimating 1 for Log Wages (colum 1), an indicator for
unemployment (Column 2) and labor market participation (Column 3). Low-wage workers are
those with an estimated probability greater than 0.28. High migration cities are cities with a
share of Venezuelan immigrants in the Labor force superior to the median across cities in 2005.
Standard errors robust to intra-city correlation in parentheses. P-values calculated using Wild
Bootstrap are presented in brackets. Significance levels are: * p<0.01, ** p<0.05, * p<0.1

Standard errors (in parenthesis) are robust to intra-city correlation. This is, I allow for the residual
to be correlated across individuals inside the same city. To avoid the problems in inference that
may arise from a small number of clusters (Cameron et al., 2008) I also report the wild bootstrap
P-values'!. Since the p-values and confidence intervals associated constructed using the wild
bootstrap procedure are, in general, more conservative, I will report only these p-values in the
following analysis. Column (1) shows that the estimated effect on log wages of -0.0712 that is
statistically significant (p-value < 0.05). This suggests that, following the reopening of the border,

1See Roodman et al. (2019) for a guide to implement this procedure.
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low-wage workers in cities with high migration exposure experienced an additional 7.1 percent
reduction in wages compared to similar workers in low-migration cities and relative to higher-wage
workers. This result is consistent with downward pressure on wages due to increased labor supply
from migration inflows. Prior to the shock, the average monthly salary of workers earning 75%
or less of the minimum wage was approximately 82 USD. A 7% decline thus corresponds to a
reduction of about 5.7 USD per month, or roughly 69 USD per year, representing a substantial loss
for low-wage workers

In contrast, column (2) indicates no significant effect on the probability of unemployment. This
implies that while low-wage workers faced wage adjustments, there was no corresponding increase
in unemployment risk. Finally, column 3 reports the effects on participation. I found a positive and
non-significant increase in the probability of participating in the labor market. To explore possible
dynamic impacts, table A.1 divides the post-opening period into two periods before and after 2018.
This table reports evidence about a stable negative effect over the course of the post period, but a
short run impact on participation in the first part of the post period: right after the border opening,
participation increased by a little less than 3%, which represents 7% of the standard deviation in
participation across individuals.

It is important to note that the validity of the DDD estimator relies on the parallel trends assumption:
absent the migration shock, the gap in outcomes between low-wage and high-wage workers would
have evolved similarly across high- and low-migration cities. While the DDD design partially
relaxes the need for strict parallel trends between cities, it still requires that differences in potential
trends between low- and high-wage workers are the same across cities. Therefore, testing for
pre-trends using the dynamic specification is essential to assess the credibility of this identifying
assumption. We can shed light on these dynamics and provide graphical evidence supporting the
plausibility of parallel trends before the policy change by estimating the dynamic version of equation
1. Figure 6 shows the results of this exercise for (log) wages and unemployment.

Figure 6 presents the dynamic estimates of the effect of migration on low-wage natives, using the
event-study specification described earlier. Panel A displays the evolution of log wages for low-wage
workers in high-migration cities relative to other groups, while Panel B shows the corresponding
estimates for the probability of unemployment, and panel C presents the dynamic effects over
participation.

The estimates in Panel A suggest that before the reopening of the border in mid-2016 (marked by the
vertical dashed line), there is no evidence of diverging trends between treatment and control groups.
The coefficients fluctuate around zero, and their confidence intervals overlap with zero throughout
the pre-treatment period, supporting the validity of the parallel trends assumption. After the policy
shock, however, there is a noticeable and persistent decline in wages for low-wage workers in
high-migration cities, consistent with the significant negative estimate found in Table 3.

In contrast, Panel B shows no clear evidence of an impact on unemployment rates for this group.
Both before and after the policy change, the estimates hover around zero with wide confidence
intervals, suggesting no significant displacement effect on employment. Together, these dynamics
reinforce the interpretation that the migration shock primarily manifested through wage adjustments
rather than through job losses among low-wage natives.Finally, and as discussed earlier, panel C
reports an increase in participation in the short run.
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Figure 6: Dynamic Estimates of the Effect of Migration on Low-Wage Natives
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Note: Figure 6 shows the results from estimating the dynamic version of equation 1 with s being groups of
months that belong to the same quarter. Treatment is defined as the quarter of the reopening of the border. Panel
A, depicts the results using Log Wages as the LHS variable. In panel B, the LHS variable is the probability of
being unemployed. Finally, in Panel C, the LHS variable serves as an indicator of labor market participation. All
specifications include demographic controls, city, and time (monthly) fixed effects and city trends. Low-wage
workers are those with an estimated probability greater than 0.28. High migration cities are cities with a share of
Venezuelan immigrants in the Labor force superior to the median across cities in 2005.Confidence Intervals at the

95% are calculated using Wild Bootstrap with 999 repetitions.

6.2 Robustness

The definition of the treated group based on the probability threshold that achieves a high recall of
75% ensures that this group captures roughly 75% of all low-wage workers and will be correctly
classified. Nevertheless, as shown in Figures A.1,A.2, and, A.3, which plots the point estimates and
95% confidence intervals from estimating equation 1 under alternative definitions of both treatment
and control groups, the results are robust to several definitions of the probability threshold (0.48,
0.38, 0.28, or 0.18) and also to defining the control group (non-low-wage workers) as those that

have a low probability ( less than 0.08 or 0.18) of being a low-wage worker.

Each dot in the figure corresponds to a different specification. The red dot represents the baseline
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specification, and Blue dots denote alternative specifications. Across all variations, the estimated
coefficients remain negative and statistically similar in magnitude, ranging from approximately
-0.05 to -0.10, with overlapping confidence intervals.

Another potential concern is that the results are driven by any single city in the sample. Since certain
cities may have experienced particularly large inflows of migrants or idiosyncratic labor market
shocks, their inclusion could disproportionately influence the overall results.To address this concern
I sequentially exclude one city at a time and re-estimate the dynamic specification in Figure A .4.
Consistent estimates across these iterations indicate that the results are not dominated by outliers or
city-specific factors, strengthening confidence in the validity and generalizability of the findings.

6.3 Other Outcomes

Table 4 presents the results of estimating DDD model to assess the effect of immigration on various
labor market outcomes: the probability of working in a small firm (Column 1), the probability of
having an open-ended contract (Column 2), a formality index (Column 3), and the probability of
being self-employed (Column 4). All specifications include city and time fixed effects, a rich set of
demographic controls, and use predictions from an XGBoost model to classify individuals by wage
level. Standard errors are clustered at the city level.

Across all columns, the estimates of this interaction term are small and statistically insignificant,
suggesting limited average effects of Venezuelan immigration on the outcomes studied. In contrast,
the interaction term Low Wage x High Mig. City is statistically significant in Columns 2 and 4,
indicating that even before the treatment period, low-wage individuals in high-migration cities had
lower probabilities of holding open-ended contracts and higher probabilities of being self-employed.
Additionally, consistent with prior expectations, the coefficient on Low Wage is significant across
all specifications and indicates that low-wage individuals are more likely to work in small firms,
less likely to hold formal jobs or open-ended contracts, and more likely to be self-employed.

Overall, the results show no strong evidence that immigration negatively affected other worker
conditions of the native employees, namely firms size, formality and the probability of being
self-employed.

6.4 Discussion

The results presented so far indicate that the Colombian labor market absorbed the Venezuelan
inflow mainly through wage compression at the lower end of the distribution, with limited effects
on employment, formality, or self-employment. This suggests that in highly flexible and segmented
labor markets, migration shocks may translate more into wage adjustments than into job losses,
as firms and workers adapt through informal mechanisms rather than formal restructuring. The
wage effects concentrated among low-wage natives are consistent with increased competition in the
informal or semi-formal sectors, where barriers to entry are low and minimum wage regulations are
often non-binding.

The evidence also has clear policy implications. While the Colombian labor market demonstrated
resilience in absorbing a large number of Venezuelan migrants, the burden of adjustment fell
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disproportionately on vulnerable native workers. Targeted interventions aimed at protecting the
earnings of low-wage workers—such as wage subsidies, training programs, and incentives for formal
hiring—could help mitigate these pressures. In parallel, policies that facilitate the labor market
integration of migrants, such as recognition of qualifications and simplified formalization procedures,
can reduce informality and promote productivity gains. Ultimately, the challenge for policymakers
is to balance protection and inclusion: designing frameworks that safeguard vulnerable natives
without restricting migrants’ access to decent work, thereby ensuring that migration contributes to
shared economic gains.

Table 4: Triple Difference In Differences Estimates of the Effect of Immigration on Native Labor

Market Conditions
) 2 3)
Dependent Variable Self Employee  Formality = Works Small Firm
Low Wage x High Mig. City x Post 0.001 -0.013 0.001
[ 0.947] [0.165] [ 0.855]
Low Wage x Post -0.007 0.009 -0.009
[ 0.457] [0.209] [ 0.021]**
High Mig. City x Post 0.003 0.007 -0.001
[ 0.765] [0.126] [ 0.825]
Low Wage x High Mig. City 0.030 0.019 0.003
[ 0.023] ** [ 0.298] [ 0.698]
Low Wage 0.046 -0.144 0.097
[ 0.003] #*#* [ 0.000]*** [ 0.000]***
Observations 1,472,614 1,472,614 1,472,614
Adjusted R-squared 0.113 0.220 0.188
Dep. Mean 0.434 0.438 0.557
Dep. Sd 0.496 0.496 0.497
City FE Yes Yes Yes
Time FE Yes Yes Yes
Demographic Controls Yes Yes Yes
City Trends Yes Yes Yes
Prediction Model XGB XGB XGB

Note: Table 4 shows the results of estimating 1. Low-wage workers are those with an estimated
probability greater than 0.28. High migration cities are cities with a share of Venezuelan
immigrants in the Labor force superior to the median across cities in 2005. Wild Bootstrap
P-Values on Brackets. * p<0.01, ** p<0.05, * p<0.1

7 Heterogeneous Effects

Table 5 presents the results from the Fourth Difference-in-Differences specification in equation (2).
First, to investigate the heterogeneous effects of migration on log wages across different industries,
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Table 5: Fourth Difference In Differences Estimates of the Heterogeneous Effect of Migration

Shock on Wages
()] @ 3 (C)
Industry with: High High share of ~ High Share of  High Share of
y ’ Kaitz Index Pension Affiliates  Small Firms  Self Emplyment
Low Wage x High Mig. City x Post x Indicator 0.008 -0.003 0.060 0.040
[0.527] [0.739] [ 0.042]** [0.123]
Low Wage x High Mig. City x Post -0.081 -0.071 -0.123 -0.103
[ 0.009] *** [0.011]** [ 0.007]*** [ 0.023]**
Linear Combination -0.073 -0.074 -0.063 -0.063
[ 0.009] *** [ 0.004]*** [0.018]** [ 0.004]%#**
Observations 1,472,614 1,467,904 1,467,904 1,467,904
Adjusted R-squared 0.368 0.368 0.367 0.367
Dep. Mean 13.426 13.426 13.426 13.426
Dep. Sd 0.912 0911 0911 0911
City FE Yes Yes Yes Yes
Time FE Yes Yes Yes Yes
Demographic Controls Yes Yes Yes Yes
City Trends Yes Yes Yes Yes
Prediction Model XGB XGB XGB XGB

Note: Table 5 shows the results of estimating a 4 interaction model for Log Wage. Low-wage workers
are those with an estimated probability greater than 0.28. High migration cities are cities with a share of
Venezuelan immigrants in the Labor force superior to the median across cities in 2005. Wild Bootstraped
P-values robust to intra-city correlation in brackets. * p<0.01, ** p<0.05, * p<0.1

I interact the treatment variable with industry-level indicators, defined based on pre-border-opening
conditions. Specifically, column (1) classifies industries according to their Kaitz index at the 2-digit
level, designating those above the median as “High Kaitz” industries. Columns (2), (3) and (4)
follow a similar approach, using measures of informality: the proportion of workers affiliated with
the pension system, the proportion employed in small firms (fewer than five employees), and the
proportion of self-employed workers, respectively.

The coefficient on the triple interaction term—Low Wage x High Migration City x Post—is negative
and statistically significant across all four columns, indicating that low-wage workers in high-
migration cities experienced a consistent wage penalty following the migration shock. In contrast,
the fourth interaction term, which interacts the treatment with the industry-level indicator, is small
in magnitude and statistically insignificant in all but column 4, where the triple difference coefficient
shows that the reduction in wages for low-wage workers in sectors with a low share of small
firms is twice as large as the impact for workers in sectors with a high share of small firms. This
suggests that the wage effect is relatively homogeneous across industries, regardless of differences
in informality levels or the bindingness of the minimum wage. Therefore, the main conclusion is
that the migration shock disproportionately affected low-wage workers across the board, irrespective
of industry characteristics such as informality.

Table 6, on the other hand, reports the estimates from the Fourth Differences-in-Differences
specification, which further interacts the main triple difference term with indicators for different
subpopulations. This allows us to explore heterogeneity in the effects of migration on low-wage
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Table 6: Fourth Difference In Differences Estimates of the Heterogeneous Effect of Migration

Shock
()] (@) 3 (C)) (&)
Sub Population Age from 15t0 28 Age from29t040  Age4l+ Females  Low Education
Panel A. Log Wage
Low Wage x High Mig. City x Post x Sub Population -0.042 0.005 0.034 -0.001 -0.003
[0.072] * [ 0.266] [0.101] [0.971] [0.838]
Low Wage x High Mig. City x Post -0.059 -0.072 -0.086 -0.075 -0.064
[ 0.014] ** [ 0.003]#** [ 0.008]*** [ 0.053]* [ 0.066]*
Linear Combination -0.101 -0.067 -0.052 -0.076 -0.067
[0.011] ** [0.011]** [0.015]**  [0.027]** [ 0.018]**
Observations 1,472,614 1,472,614 1,472,614 1,472,614 1,472,614
Adjusted R-squared 0.358 0.358 0.358 0.359 0.358
Dep. Mean for Sub Pop 13.295 13.571 13.401 13.228 13.454
Dep. Sd for Sub Pop 0.844 0.854 0.981 1.015 0.961
Panel B. Unemployment
Low Wage x High Mig. City x Post x Sub Population -0.006 -0.008 0.013 -0.020 0.017
[ 0.754] [ 0.147] [0.301] [ 0.007]%** [0.165]
Low Wage x High Mig. City x Post -0.001 -0.001 -0.012 0.006 -0.016
[0.781] [0.719] [ 0.250] [ 0.266] [ 0.064]*
Linear Combination -0.007 -0.009 0.001 -0.014 0.001
[0.616] [0.133] [ 0.845] [ 0.052]* [0.863]
Observations 1,905,710 1,905,710 1,905,710 1,905,710 1,905,710
Adjusted R-squared 0.057 0.056 0.058 0.056 0.056
Dep. Mean for Sub Pop 0.204 0.104 0.076 0.148 0.123
Dep. Sd for Sub Pop 0.403 0.306 0.265 0.355 0.328
Panel C. Participation
Low Wage x High Mig. City x Post x Sub Population -0.003 0.004 -0.001 0.001 0.002
[ 0.604] [ 0.734] [ 0.899] [ 0.960] [0.703]
Low Wage x High Mig. City x Post 0.019 0.016 0.020 0.014 0.017
[ 0.136] [ 0.200] [0.297] [ 0.332] [0.329]
Linear Combination 0.016 0.020 0.019 0.015 0.019
[0.274] [ 0.255] [ 0.229] [0.271] [0.161]
Observations 2,676,042 2,676,042 2,676,042 2,676,042 2,676,042
Adjusted R-squared 0.294 0.284 0.289 0.284 0.284
Dep. Mean for Sub Pop 0.567 0.873 0.747 0.632 0.683
Dep. Sd for Sub Pop 0.496 0.332 0.435 0.482 0.465
City FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Demographic Controls Yes Yes Yes Yes Yes
City Trends Yes Yes Yes Yes Yes
Prediction Model XGB XGB XGB XGB XGB

Note: Table 6 shows the results of estimating a 4 interaction model for Log Wage. Low-wage workers are those with an
estimated probability greater than 0.28. High migration cities are cities with a share of Venezuelan immigrants in the Labor
force superior to the median across cities in 2005. Wild Bootstraped P-values robust to intra-city correlation in brackets. *
p<0.01, ** p<0.05, * p<0.1
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workers across age groups, gender, and educational attainment for all the main variables, log wages,
employment and participation. The coefficient of interest in each column, "Low Wage x High Mig.
City x Post x Sub Population,” measures how the impact on low-wage workers in high-migration
cities after the border reopening varies across these subgroups.

Columns (1)-(3) show results by age group. Young workers aged 15-28 (column 1) experience a
large and statistically significant decline in log wages (-0.101) which is twice as large as the one for
the rest of workers (-0.059), suggesting they are particularly vulnerable to wage competition from
migrant inflows. In contrast, workers aged 29-40 (column 2) and older workers aged 41 and above
(column 3) experience an effect similar to the average effect.

Columns (4) and (5) present results by gender and education. There are no statistically significant
differential effects for males or females, or for low educated workers (secondary incomplete or less),
indicating that the wage impact of migration on low-wage workers does not differ systematically by
gender or education in this context.

In panels B and C I explore differential effects on unemployment and participation, respectively,
and find evidence of homogeneous effects across the different sub-populations. Except for the
unemployment rate of female individuals, which decreases after the migration shock by 1.4 percent,
a 10% decrease compared with the female unemployment rate of 14%. Together, these results
highlight important heterogeneity in the wage response to migration shocks, especially when related
to age profiles (for wages) and gender (for unemployment). Finally, in Table A.3, I present the
results from estimating equation 2 for only the first year after the border re-opening. This is because,
for participation, the main impact occurs in the first year of the post-period. I find that the effect on
participation is homogeneous across different sub-populations

8 Conclusions

This paper investigates the short-run labor market effects of the Venezuelan migration crisis on
Colombian workers, focusing on those at the lower end of the wage distribution. Exploiting the 2016
border reopening as a natural experiment, I combine a machine learning—based classification of
low-wage individuals with a Triple Differences-in-Differences identification strategy. This approach
allows for a flexible, data-driven definition of exposure to migration and enables causal inference
on how migration inflows affect vulnerable native workers.

The results reveal that Venezuelan migration led to a significant decline in wages among low-wage
natives in high-migration cities, while employment formality, self-employment, and unemployment
rates remained largely unaffected. These findings suggest that labor market adjustments to
migration occurred primarily through wage compression rather than job displacement or changes
in employment type. Heterogeneity analyses indicate that the wage impact was stronger among
younger workers.

Methodologically, this paper contributes to the growing intersection of machine learning and causal
inference in labor economics by demonstrating how predictive models can enhance the identification
of exposed populations in quasi-experimental settings. Substantively, it extends the evidence on
migration shocks beyond high-income countries, showing that even in highly informal labor markets
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such as Colombia’s, large inflows of migrants can generate measurable but contained wage effects
concentrated at the bottom of the income distribution. Overall, the evidence points to the resilience of
urban labor markets in absorbing large migrant populations, albeit with distributional consequences
for the most vulnerable workers. Future research should examine longer-term dynamics, including
potential effects on occupational mobility, firm productivity, and local public services, to better
understand how migration reshapes economic opportunity in middle-income host countries.

Data Availability Statement: The main data used in this paper can be download from DANE data
portal: https://microdatos.dane.gov.co/index.php/catalog/MERCLAB-Microdatos. A replication
package for this article is available at https://zenodo.org/records/17444504.
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A Additional Tables and Figures

Table A.1: Triple Difference In Differences Estimates For Main LM outcomes

ey @) 3)
Dependent Variable Log Wage  Unemployment Participation
Low Wage x High Mig. City x Post[t <2018] -0.064 -0.008 0.028
(0.020)*** (0.004)** (0.009)***
[ 0.005] #** [ 0.097]* [ 0.024]**
Low Wage x High Mig. City x Post[t > 2018] -0.077 -0.001 0.010
(0.020)*** (0.004) (0.010)
[ 0.010] #** [ 0.858] [ 0.429]
Low Wage x Post 0.098 0.007 -0.030
(0.011)*** (0.002)*** (0.006)***
[ 0.002] *** [ 0.267] [ 0.000]***
High Mig. City x Post 0.023 0.000 -0.008
(0.020) (0.005) (0.007)
[ 0.320] [ 0.989] [ 0.327]
Low Wage x High Mig. City 0.069 0.003 -0.017
(0.021)*** (0.010) (0.012)
[ 0.002] #** [ 0.839] [ 0.294]
Low Wage -0.424 0.052 -0.070

(0.017)*%** (0.005)*** (0.012)%%*%*
[ 0.000] *3#* [ 0.000]*** [ 0.014]**

Observations 1,472,614 1,905,710 2,676,042
Adjusted R-squared 0.358 0.056 0.283
Dep. Mean 13.426 0.122 0.712
Dep. Sd 0.912 0.328 0.453
City FE Yes Yes Yes
Time FE Yes Yes Yes
Demographic Controls Yes Yes Yes
City Trends Yes Yes Yes
Prediction Model XGB XGB XGB

Note: Table A.1 shows the results of estimating 1 for Log Wages (colum 1), an indicator for unemployment
(Column 2) and labor market participation (Column 3). Low-wage workers are those with an estimated
probability greater than 0.28. High migration cities are cities with a share of Venezuelan immigrants in the
Labor force superior to the median across cities in 2005. Standard errors robust to intra-city correlation in
parentheses, Wild Bootstrap P-values in brackets. * p<0.01, ** p<0.05, * p<0.1
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Table A.2: Triple Difference In Differences Estimates

ey @) 3)
Dependent Variable Self Employee  Formality =~ Works Small Firm
Low Wage x High Mig. City x Post[t <2018] 0.003 -0.012 0.001
(0.012) (0.008) (0.004)
[ 0.810] [0.174] [ 0.884]
Low Wage x High Mig. City x Post[t > 2018] -0.001 -0.014 0.000
(0.011) (0.008) (0.004)
[0.971] [ 0.176] [ 0.928]
Low Wage x Post -0.007 0.009 -0.009
(0.007) (0.006) (0.001)***
[ 0.421] [ 0.240] [ 0.023]**
High Mig. City x Post 0.002 0.007 -0.001
(0.011) (0.004) (0.004)
[ 0.834] [ 0.152] [ 0.822]
Low Wage x High Mig. City 0.030 0.019 0.003
(0.010)*** (0.014) (0.006)
[ 0.025] ** [ 0.297] [ 0.651]
Low Wage 0.046 -0.144 0.097

(0.005)*** (0.009)*** (0.002)***
[ 0.003] *** [ 0.000]*** [ 0.000]#**

Observations 1,472,614 1,472,614 1,472,614
Adjusted R-squared 0.113 0.220 0.188
Dep. Mean 0.434 0.438 0.557
Dep. Sd 0.496 0.496 0.497
City FE Yes Yes Yes
Time FE Yes Yes Yes
Demographic Controls Yes Yes Yes
City Trends Yes Yes Yes
Prediction Model XGB XGB XGB

Note: Table A.2 shows the results of estimating 1 for Log Wages (colum 1), an indicator for unemployment
(Column 2) and labor market participation (Column 3). Low-wage workers are those with an estimated
probability greater than 0.28. High migration cities are cities with a share of Venezuelan immigrants in the
Labor force superior to the median across cities in 2005. Standard errors robust to intra-city correlation in
parentheses, Wild Bootstrap P-values in brackets. * p<0.01, ** p<0.05, * p<0.1
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Table A.3: Fourth Differences-in-Differences Estimates of the Heterogeneous Effect of Migration

Shock
1 (@) 3) (C)) (5)
Sub Population Age from 15t028 Age from29to40 Age4l+  Females Low Education
Panel A. Log Wage
Low Wage x High Mig. City x Post[t <2018] x Sub Population -0.028 -0.007 0.030 -0.020 -0.010
[0.212] [ 0.668] [0.154] [0.558] [0.534]
Low Wage x High Mig. City x Post[t <2018] -0.057 -0.063 -0.077 -0.053 -0.052
[0.013] ** [0.011]%* [0.011]%*  [0.135] [0.067]*
Linear Combination -0.085 -0.070 -0.047 -0.073 -0.062
[0.016] ** [ 0.014]%* [0.018]** [0.028]**  [0.009]***
Observations 1,472,614 1,472,614 1,472,614 1,472,614 1,472,614
Adjusted R-squared 0.358 0.358 0.358 0.359 0.358
Dep. Mean for Sub Pop 13.295 13.571 13.401 13.228 13.454
Dep. Sd for Sub Pop 0.844 0.854 0.981 1.015 0.961
Panel B. Unemployment
Low Wage x High Mig. City x Post[t <2018] x Sub Population -0.009 -0.012 0.018 -0.014 0.018
[0.550] [ 0.083]* [0.121]  [0.021]%* [0.122]
Low Wage x High Mig. City x Post[t <2018] -0.004 -0.004 -0.019 -0.003 -0.021
[0.148] [0.276] [0.0911%  [0.538] [ 0.037]**
Linear Combination -0.013 -0.016 -0.001 -0.017 -0.003
[0.334] [ 0.0397%* [0.708]  [0.018]** [0.628]
Observations 1,905,710 1,905,710 1,905,710 1,905,710 1,905,710
Adjusted R-squared 0.057 0.056 0.058 0.056 0.056
Dep. Mean for Sub Pop 0.204 0.104 0.076 0.148 0.123
Dep. Sd for Sub Pop 0.403 0.306 0.265 0.355 0.328
Panel C. Participation
Low Wage x High Mig. City x Post[t <2018] x Sub Population 0.007 0.003 -0.010 -0.002 -0.002
[0.304] [0.717] [ 0.444] [0.857] [ 0.830]
Low Wage x High Mig. City x Post[t <2018] 0.025 0.026 0.034 0.027 0.030
[0.013] ** [ 0.018]** [0.0451%* [0.075]* [0.151]
Linear Combination 0.032 0.029 0.024 0.025 0.028
[0.014] ** [ 0.016]%* [0.035]1%* [0.039]*%* [ 0.002]***
Observations 2,676,042 2,676,042 2,676,042 2,676,042 2,676,042
Adjusted R-squared 0.294 0.284 0.289 0.284 0.284
Dep. Mean for Sub Pop 0.567 0.873 0.747 0.632 0.683
Dep. Sd for Sub Pop 0.496 0.332 0.435 0.482 0.465
City FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Demographic Controls Yes Yes Yes Yes Yes
City Trends Yes Yes Yes Yes Yes
Prediction Model XGB XGB XGB XGB XGB

Note: Table A.3 shows the results of estimating equation 2 for Log Wages (Panel A), Unemployment indicator (Panel B)
and Participation (Panel C). Low-wage workers are those with an estimated probability greater than 0.28. High migration
cities are cities with a share of Venezuelan immigrants in the Labor force superior to the median across cities in 2005. Wild
Bootstraped P-values robust to intra-city correlation in brackets. * p<0.01, ** p<0.05, * p<0.1
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Figure A.1: Robustness of the Effect of Migration on Wages: Different Thresholds
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Note: Figure A.1 shows the estimated coefficient p”PP and the associated confidence interval from estimating
equation 1 for Log Wages using different definitions of low-wage individuals and control individuals. Red denotes
the baseline specification, and blue denotes an alternative specification. Confidence Intervals are calculated using
the wild Bootstrap procedure.
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Figure A.2: Robustness of the Effect of Migration on Unemployment: Different Thresholds

Note: Figure A.2 shows the estimated coefficient p?PP and the associated confidence interval from estimating
equation 1 for Unemployment using different definitions of low-wage individuals and control individuals. Red
denotes the baseline specification, and blue denotes an alternative specification. Confidence Intervals are calculated
using the wild Bootstrap procedure.
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Figure A.3: Robustness of the Effect of Migration on Participation: Different Thresholds

Note: Figure A.3 shows the estimated coefficient p?PP and the associated confidence interval from estimating
equation 1 for Participation using different definitions of low-wage individuals and control individuals. Red denotes
the baseline specification, and blue denotes an alternative specification. Confidence Intervals are calculated using
the wild Bootstrap procedure.
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Figure A.4: Dynamic Estimates of the Effect of Migration on Low-Wage Natives
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Note: Figure A.4 shows the results from estimating the dynamic version of equation 1 with s being groups of
months that belong to the same quarter, eliminating a city at a time. Grey lines and triangles denote the results from
each one of this exercises. The orange solid line denotes the baseline coefficients, dashed lines denote the baseline
confidence intervals calculated using Wild Bootstrap with 999 repetitions. Panel A, depicts the results using Log
Wages as the LHS variable. In panel B, the LHS variable is the probability of being unemployed. Finally, in Panel
C, the LHS variable serves as an indicator of labor market participation. All specifications include demographic
controls, city, and time (monthly) fixed effects and city trends. Low-wage workers are those with an estimated
probability greater than 0.28. High migration cities are cities with a share of Venezuelan immigrants in the Labor
force superior to the median across cities in 2005.
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Figure A.5: Precision Recall Curves on the Test Set
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Note: Figure A.5 depicts the out-of-sample performance of each of the XGBoost model
and the precision and recall of several demographic classification of low-wage workers
using demographic observables. The data used is the test data from the 2012 GEIH
sample. LTHS refers tp workers with Less Than High School schooling. Teens are
workers from 15 to 25 years old. See the main text for details about the test sample
construction and estimation of the XGBoost model.
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Figure A.6: Dynamic Estimates of the Effect of Migration on Low-Wage Natives
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Note: Figure A.6 shows the results from estimating the dynamic version of equation 1 with s being groups of
months that belong to the same quarter. Treatment is defined as the quarter of the reopening of the border. Panel A,
depicts the results using Log Wages as the LHS variable. In panel B, the LHS variable is the probability of being

unemployed.
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B Machine Learning Models

B.1 Evaluation Metrics: Precision-Recall Curve and AUC-PR

From any binary classification exercise we can obtain the following possible outcomes:

True Positives (TP): Instances correctly predicted as positive.

False Negatives (FN): Instances that are actually positive but incorrectly predicted as negative.

False Positives (FP): Instances that are actually negative but incorrectly predicted as positive.

True Negatives (TN): Instances correctly predicted as negative.

This can be summarized with the confusion matrix, which records all possible outcomes of the
prediction compared with the true class:

Predicted Positive | Predicted Negative
Actual Positive | True Positive (TP) | False Negative (FN)
Actual Negative | False Positive (FP) | True Negative (TN)

Table B.1: Confusion matrix of classification outcomes.

Obviously, the objective is to minimize the number of incorrect instances, i.e., FP and FN. But in
many application the loss incurred by a FP or a FN may be different. Precision is a measure of how
well the model is at reducing False Positives:

TP
TP+FP
In the extreme a Precision of 1 implies not FP. Note that this can be achieve if the model classifies
all instances as negative cases. On the other hand Recall is a measure of how well the model is at
reducing False Negatives:

Precision =

TP
TP+FN
Similarly, any model that predicts all instances as positive will yield a 100% recall rate.

Recall =

This extremes are not optimal in any classification problem. So the objective is to find a balance
between Precision and Recall. The precision-recall curve plots Precision against Recall for different
threshold values. The AUC-PR is defined as the area under this curve:

1
AUC-PR = / P(R)dR
0
where P(R) is the precision at recall R.
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B.2 Lasso Logistic Regression

Lasso logistic regression is a type of regression analysis used for binary classification tasks,
which integrates both variable selection and regularization to enhance the prediction accuracy
and interpretability of the statistical model it produces. The logistic regression model predicts the
probability of the binary response variable Y given the predictor variables X. The functional form
of the logistic model is given by:

eXP

where X represents the matrix of input features and 8 the vector of coefficients to be estimated.

In a lasso logistic regression, an ¢ penalty term is added to the loss function to enforce sparsity in the
solution. This penalty term helps in shrinking some of the coefficients exactly to zero, automatically
performing variable selection. The regularized loss function for lasso logistic regression is:

n

LB) = — [ ¥ brlog(P) + (1 — ) log(1— By Mflw

i=1

where 7 is the number of observations, y; is the observed outcome for observation i, P; is the
predicted probability for i, p is the number of predictors, and A is the regularization parameter that
controls the strength of the penalty.

The lasso logistic regression model is estimated using the glmnet package in R, which efficiently
implements coordinate descent algorithms to optimize the loss function. The glmnet function
automatically searches over a grid of A values to determine the optimal regularization strength,
allowing the selection of a model with a balance between complexity and interpretability. Typically,
cross-validation is employed to select the best A parameter that minimizes the error on unseen data.

Figure B.1: Cross-Validation Results for Logistic Regression
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Figure B.1 shows the results of the 5-fold cross-validation exercise for the Lasso-Logit model. The dashed gray line
shows the best parameter.
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B.3 Random Forest

Random Forest is an ensemble learning method widely used for classification and regression tasks,
which constructs multiple decision trees during training and outputs either the mode of the classes
(classification) or the mean prediction (regression) of the individual trees. This method enhances
predictive accuracy and controls overfitting by leveraging the diversity among the trees.

The basic building block of a Random Forest is a decision tree. For a classification task, each
decision tree provides a class prediction, and the Random Forest takes a majority vote to decide the
final class. The Random Forest algorithm introduces two main sources of randomness to ensure
tree diversity: Bootstrap Sampling: It creates different training subsets by randomly sampling with
replacement from the original data features. Feature Selection: At each node of the tree, it selects
the best split among a random subset of predictors rather than considering all predictors.

The idea behind integrating multiple decision trees in this way is that individual trees might have
high variance, but when aggregated as an ensemble, they provide robust and reliable predictions.

Although the Random Forest model does not require an explicit functional form like parametric
models (e.g., logistic regression), it operates based on simple if-then rules structured in decision
trees. For classification, the prediction y for a given input X is given by:

¥ =mode({T1(X), Ir(X),...,Tx(X)})
where 7, represents the k-th decision tree in the forest, and m is the total number of trees.

The Random Forest model is estimated using packages such as randomForest in R. The model is
built by growing multiple decision trees as follows:

- Tree Construction: Each tree is grown using a bootstrap sample from the training dataset. A
random subset of features is selected at each split for the node decision. - Out-of-Bag (OOB)
Error Estimation: Trees are trained using bootstrap samples, leaving one-third of the samples as
out-of-bag data to estimate error rates and variable importance internally. - Aggregation: The final
prediction for classification tasks is made by majority voting (mode) across all the trees.

Random Forest is advantageous due to its ability to handle large datasets with higher dimensionality
and multicollinearity and provides a measure of feature importance, making it both a robust and
interpretable model.
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Figure B.2: Cross-Validation Results for Random Forest
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Figure B.2 shows the results of the 5-fold Cross-validation exercise for the Random Forest model. Panel (a) shows the
results for the Number of Randomly selected variables in each node to be considered (Mtry) and panel (b) shows the

results for the Maximum number of nodes of each tree. The dashed gray line shows the best parameter.

B.4 Boosting

XGBoost (Extreme Gradient Boosting) is a powerful and efficient implementation of gradient-
boosted decision trees. It is well-suited for regression and classification tasks due to its performance
and scalability. The primary strength of XGBoost lies in its use of second-order gradient information,
flexibility for user-defined objectives and evaluation criteria, and a robust handling of missing data.

Functional Form

The model prediction y; for an input Xj is given as the sum of the predictions from K individual
trees:

K
Ji=Y fiX), fieZF
k=1

where .7 denotes the space of regression trees (CART). The objective function to be minimized
consists of a loss function to measure the goodness of fit and a regularization term to control the
complexity of the model:

n K

2(0)=Y 1(vi.9) + Y, Q(f)

i=1 k=1

Here, [ is a differentiable convex loss function, and Q( f;) is the regularization term defined as:

1
Q(f) =T+ 52| wl

where T is the number of leaves in the tree f, w represents the vector of scores on leaves, 7 is the
penalty for each leaf, and A is the L, regularization term on leaf weights.
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Parameter Tuning

Effective tuning of XGBoost parameters is critical for achieving optimal model performance. Key
parameters include:

- Learning Rate (17): Controls the step size during the updating of trees. Smaller values require
more boosting rounds. Typical values range from 0.01 to 0.3.

- Max Depth (max_depth): Determines the maximum depth of a tree. Controls model complexity;
deeper trees can capture more complex patterns but are prone to overfitting. Commonly set between
3 to 10.

- Subsample: Proportion of samples used for training each tree. Helps prevent overfitting by
introducing randomness. Values usually range from 0.5 to 1.

- Colsample _bytree: Fraction of features to be randomly sampled for each tree. Helps in controlling
overfitting. Usual values range from 0.3 to 0.8.

- Gamma (y): Minimum loss reduction required to make a further partition in a leaf node. Higher
values lead to more conservative models.

- Lambda (1): L, regularization term on weights, analogous to Ridge regression, providing a way
to penalize large coefficients to prevent overfitting.

- Alpha (o): L; regularization term on weights, analogous to Lasso regression, helpful for inducing
sparsity in feature weights.

The optimization of these parameters is generally done through techniques like grid search
or automatic hyperparameter tuning libraries, possibly leveraging cross-validation to evaluate
performance across different parameter settings. These tuning practices ensure that the model
generalizes well on unseen data.

Figure B.3: Cross-Validation Results for XGboost Model
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Figure B.3 shows the results of the 5-fold Cross-validation exercise for the XGBoost model. Panel (a) shows the results
for the Number of Randomly selected variables in each node to be considered (Mtry) and panel (b) shows the results for

the Maximum number of nodes of each tree. The dashed gray line shows the best parameter.
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B.5 Neural Network Model

A neural network is a computational model inspired by the way biological neural networks in the
human brain process information. It consists of interconnected processing nodes (neurons) which
work collectively to solve specific problems. Neural networks are particularly effective for tasks
like classification, regression, and pattern recognition. The basic structure of a simple feedforward
neural network includes:

* Input Layer: Consists of input neurons, each representing a feature of the data.

* Hidden Layer(s): Consists of one or more hidden layers of neurons which transform the input
into meaningful representations. The activation of a neuron in the hidden layer is calculated
as:

1
hj =0 bj—f—Zx,-wij
=1

1=
where o is an activation function (often a sigmoid in nnet), b; is the bias, x; are input features,
and w;; are the weights connecting the input unit i to the hidden unit j.
* Output Layer: Produces the final prediction of the network. For classification tasks, the output

might be transformed using a softmax function to produce probabilities.

Training a neural network involves finding the optimal set of weights W and biases b that
minimize a loss function. Commonly, the loss function for a classification task is the cross-
entropy loss:

L(y,)Ai) = Z)’c 1Og(),’\c)

where y is the true distribution (often one-hot encoded) and ¥ is the predicted distribution.
The nnet package uses the following process for training:
* Backpropagation The algorithm computes gradients of the loss function with respect to the

weights using the backpropagation algorithm and updates them in the direction that reduces
the error. The update rule for stochastic gradient descent (SGD), often used in nnet, is:

(t+1) _ (1) JL

where 1) is the learning rate, controlling the step size of each update.

* Convergence Training continues iteratively for a predefined number of epochs or until the
change in loss is smaller than a tolerance level, indicating convergence.

The key parameters in the implementation of the model are:
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* Size: Number of units in the hidden layer. This affects the model’s capacity to learn complex
patterns.

* Decay: A regularization parameter to prevent over-fitting by penalizing large weights through
an L penalty term.

* Epochs:Number of iterations for which the optimization algorithm will run.

The nnet package thus provides a straightforward approach to building and training simple neural
network models in R. This fundamental model serves as a building block for more complex
architectures, accommodating various types of data.

Figure B.4: Cross-Validation Results for Neural Net Model
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Figure B.4 shows the results of the 5-fold Cross-validation exercise for the Neural Net model. Panel (a) shows the
results for the (b) shows the results for the, panel (c)... . The dashed gray line shows the best parameter.

B.6 Super Learner

I implemented the Super Learner algorithm described in Polley and van der Laan (2010). The Super
Learner is an ensemble machine learning method that creates an optimal weighted combination of
predictions from a library of candidate algorithms. It aims to improve predictive performance by
leveraging the strengths of multiple models.

The Super Learner model comprises several steps. First, define a set of candidate learner models,
M, M,, ..., Mg, which include all algorithms previously trained. Second, split the training data
into V folds. In the v =1...V step, each candidate model is trained on all folds but v , generating
y () predictions for learner M; on the validation fold, v.The result is a N x K matrix with out of
sample- cross-validation probabilities.

These probabilities serve as inputs for the meta-learning phase. The task of the meta-learner is to
find weights oy for each model such that:

K
Final Prediction = Y og 7%

k=1

where Zszl oy = 1, ensuring the predictions are also probabilities.

I select the combination of weights that yield the highest AUC-PR on validation data. Cross-
validation ensures that these results generalize to unseen data and is crucial in determining the
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robustness of the combined model. This methodology offers a flexible yet powerful approach
to building ensembles, providing a path to robust and interpretable models even in challenging
scenarios with skewed class distributions by focusing on precision and recall.

B.7 Further Results

Figure B.5, show the histogram of the estimated probability for each year and shows that the
distribution of probabilities is stable across time.
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Figure B.5: Distribution of Estimated Probability Across Years
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Table B.2: Description of Variables Used in Machine Learning Model

Variable Description

sex Gender of the individual (e.g., male or female).

age Age of the individual in years.

relation_with_head Relationship of the individual to the household head (e.g., spouse, child, parent).
marital_status Marital status of the individual (e.g., single, married, divorced).
literacy Literacy status of the individual (e.g., ability to read and write).
month Month of the survey, event, or data collection.

city City or location of residence.

h_usedrooms Number of rooms used in the household.

h_bathroom_type Type of bathroom facility in the household (e.g., flush toilet, pit latrine).
h_bathroom_shared Indicator whether the bathroom is shared with other households.
h_garbage_disposal Method of garbage disposal in the household (e.g., collected, burned).
h_water_supp Indicator of household having clean water supply.
h_household_ownership Ownership status of the household (e.g., owned, rented).
h_amenitiesO1 Household has home phone service.

h_amenities02 Household has water heater or electric shower.

h_amenities03 Household has color television.

h_amenities04 Household has DVD player.

h_amenities05 Household has sound system.

h_amenities06 Household has computer for household use.

h_amenities07 Household has vacuum cleaner or polisher.

h_amenities08 Household has air conditioning.

h_amenities09 Household has fan.

h_amenities10 Household has bicycle.

h_amenities11 Household has motorcycle.

h_amenities12 Household has private car.

h_amenities13 Household has vacation home or apartment.

h_amenities 14 Household has washing machine.

h_amenities15 Household has refrigerator.

h_amenities16 Household has blender.

h_amenities17 Household has electric or gas stove.

h_amenities18 Household has electric or gas oven.

h_amenities19 Household has microwave oven.

h_size Size of the household (number of members).

h_type Type of housing (e.g., apartment, single-family house).

h_walls Material of the household walls (e.g., brick, wood).

h_floors Material of the household floors (e.g., tile, concrete).

h_gas_supp Source of gas supply for the household (e.g., natural gas, propane).
h_sewerage_supp Type of sewerage system in the household (e.g., public sewer, septic).
h_stratum Socioeconomic stratum or level of the household.
h_const_water_supp Indicator of constant water supply availability.

h_amenities Overall count or index of household amenities.

h_imputed_rent Imputed rental value of the household dwelling.

nminors Number of minors (children under 18) in the household.

offspring Number of offspring of the individual.

sons Number of sons of the individual.

brothers Number of brothers of the individual.

older_brother Indicator or count of older brothers.
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